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Experiments by Simpson & Linden (1989) have shown that a horizontally nonlinear 
distribution of fluid density is necessary in order to produce frontogenesis. This paper 
considers the simplest case of such a nonlinear distribution, a quadratic density 
distribution in a channel. Two flow models are examined, porous media and 
Boussinesq. The evolution equations for both these flows can be reduced to one- 
dimensional systems. An exact solution is derived for porous-media flow with no 
molecular diffusion. Numerical solutions are shown for the other cases. The porous- 
media and inviscid/non-diffusive Boussinesq systems exhibit ‘ classic ’ frontogenesis 
behaviour: a rapid and intense steepening of the density gradient near the lower 
boundary while horizontal divergence reduces the upper-boundary density gradient 
to nearly zero. The viscous Boussinesq system exhibits a more complicated 
behaviour. In this system, boundary-layer effects force frontogenesis away from the 
lower boundary and a t  late times the steepest density gradients are close to  mid- 
channel. One feature of these model systems is that they can exhibit blow-up in finite 
time. Proof of blow-up is given for the non-diffusive porous media and inviscid/ 
nondiffusive Boussinesq cases. Numerical results indicate that blow-up also 
occurs for the diffusive porous-media case and that it may occur for the diffusive 
Boussinesq case. Despite the blow-up we believe that the model solutions can be 
applied to real situations. To support this a two-dimensional calculation has been 
made of Boussinesq frontogenesis in a long box. This calculation shows close 
agreement with the corresponding one-dimensional calculation up to times close to 
blow-up. 

1. Introduction 
Simpson & Linden (1989) have recently conducted experiments to examine the 

onset and causes of frontogenesis. Their experimental set-up was a long rectangular 
box filled with fluid with a controlled initial horizontal density distribution. The 
fluid, initially motionless, was set into motion by gravity. They found both 
analytically and experimentally that fronts fail to form when the initial gradient of 
density is uniform. The introduction of step discontinuities in the initial density 
gradient (making the density distribution piecewise linear instead of linear), 
however, did lead to frontal formation. These results led Simpson & Linden to 
conclude that curvature must be present in their experiment’s initial density field in 
order for a front to form. They further hypothesized that the timescale of 
frontogenesis is on the order of ( (q lp )  Lp,,)-f. Here, p x x  and p are the characteristic 
density ‘curvature’ and the mean density over a region of size L .  

This paper discusses some flow models that are applicable to Simpson & Linden’s 
experiment and that can be used to examine the onset and timescales of frontogenesis. 
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We consider a fluid with an initially horizontally constant p,,(z) in a channel or 
semi-infinite enclosure. The exact form of the initial density distribution is p = 
po + ~ x x  x2. This density distribution results in a comparatively simple mathematical 
problem for two commonly used flow models: flow in porous media and Boussinesq 
flow. In both cases the initially quadratic distribution of density remains quadratic. 
The corresponding horizontal velocity is linear in x and the vertical velocity is x- 
independent. The originally two-dimensional system can thus be reduced to a one- 
dimensional set of evolution equations for quantities dependent on t and z .  

There is also a secondary application of our results. Flows that will be considered 
here can exhibit blow-up in finite time. As it happens, blow-up of solutions of the 
Euler and Navier-Stokes equations has recently been a topic of interest. Stuart 
(1987) has considered the blow-up of three-dimensional stagnation flows and 
Childress et al. (1989) have shown that blow-up can occur in two dimensions. Both 
Stuart and Childress et al., as in this paper, considered unbounded domains with 
velocity fields that change linearly in certain directions. Childress et al. concluded 
that these blow-ups are due primarily to the unboundedness of the model flows’ initial 
vorticity . The results herein, in showing that even the porous-media model allows 
blow-up, seem to support this. We also believe, however, that our Boussinesq model 
is usefully applicable to the Simpson & Linden experiment for times short of blow- 
up. Two-dimensional calculations will be presented to try to show this. 

This paper considers porous-media flow and Boussinesq flow separately. We first 
consider the simpler case of porous-media flow. Though frontogenesis in porous 
media is not itself of direct concern, the wealth of results that can be derived for it 
(many analytic results are possible) make this is a useful model problem. In the 
section on Boussinesq flow we consider both inviscid/non-diffusive and viscous/ 
diffusive cases. As mentioned, we also test the usefulness of the one-dimensional 
Boussinesq results by making a comparison to a full two-dimensional simulation of 
flow in a long box. 

2. The porous-media case 

2H. The equations of flow are 
In this section we consider porous-media flow in a semi-infinite enclosure of height 

with boundary conditions 

au aw 
ax a Z  
-+- = 0, 

w = - k e + g p ) ,  

( 2 . 1 ~ )  

(2 . lb)  

(2 . lc)  

( 2 . l d )  

= 0, u(x  = 0) (2.1 e )  
z-+H 
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In the above, x and z are the horizontal and vertical coordinates, u and w the 
corresponding velocities, and p the density. k is the ‘resistance ’ (permeability 
divided by the product of porosity and absolute viscosity) to flow and D is the 
diffusivity of p. 

The equations can be non-dimensionalized by scaling density by A, (to be defined 
later), lengths by H ,  velocities by A, kg, pressure by A, Hg, and time by H / A ,  kg. The 
rescaled equations are 

au aw 
ax a Z  
-+- = 0 ,  

aP 
ax’ 

u = -- 

w = -($+p), 

-+u-+w-=R at ax aZ 
aP aP aP 

(2.2a) 

(2.2b) 

(2.2c) 

(2.24 

where R, = D / A ,  Hkg. The boundary conditions (2.1 e )  are now applied at z = f 1. 
Wenowsetp =po+p2x2,p =po+pzx2,u  = ulx,andw = wo,wherep,,p2,p,,p2,u,, 

and w, are functions of z and t .  This leads to two sets of one-dimensional equations. 
The main set, for p2, p,, u,, and w,, is 

awo - u,+- - 0, aZ ( 2 . 3 ~ )  

u, = -2P2, (2.3b) 

( 2 . 3 ~ )  

(2.3d) 

A subsidiary set, for po and p,, is forced by wo and p2. 

expressed in terms of w, as p2 = -ia2w,/az2. Equation (2.3d) becomes 
Equations (2.3) can be reduced to a single evolution equation for wo. p2 can be 

Boundary conditions for w, are that wo = a3w,/az3 = 0 at z = f 1. 
At this point we can define the density scale A,. We impose 

J++P2,nonaim(z, t = = 1. 

Thus A, is defined from the magnitude of the initial distribution of dimensional p2 : 

f + H  

A,  = H J pz(z*, t* = 0) dz*, 
-H 
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where * indicates dimensional quantities. This scaling will also be used for the 
Boussinesq case. The porous-media timescaling, in terms of p:.,., becomes 

( ; $ [ ~ ~ p : . , * ( z * , t *  = O)dz* r . 
- - 

In  terms of p:.,., the average of p:*$., this is (kqHp:.,*(t* = 0))-l. 

2.1. Blow-up in Jinite time 
When R ,  = 0, it can be proved that an interesting ‘flaw ’ exists in this model system’s 
behaviour - i t  blows up in finite time. The proof requires that initially p 2 0 and 
stably distributed (dpldz < 0) and depends on the fact that  aw,/az is then limited to 
being both convex and monotonically decreasing in z for all t .  The proof is detailed 
in Appendix A and will just be outlined here. 

The proof is based on the evolution equation for aw,/az a t  the lower boundary. 
Because of its convexity and monotonicity aw,/az is always greatest there. From 
integration of (2.4) the evolution equation for dwo/az is 

where h(t)  is the constant of integration. h(t) adjusts with time to  ensure that the 
boundary conditions on wo are met. It can be found in terms of aw,/az by integrating 
(2.5). This yields 

(2.6) 

The evolution equation for aw,/az a t  the lower boundary is 

Appendix A proves blow-up by bounding h( t )  above -a(aw,/az where a is less 
than z. Somewhat lengthy arguments based on the convexity and monotonicity of 
aw,/az result in 

Applying (2.8) to  (2.7) and solving the resulting ordinary differential inequality then 
gives 

where t, is the time to blow-up. It can also be shown, again from the convexity of 
aw,/az and from the definition of A,, that i3w0/azI-,,,-, 2 1. Thus t, is bounded 
globally below 1.6375. 

Blow-up will be shown to occur also for the inviscidlnon-diffusive Boussinesq case 
and it appears to occur for both the porous media and Boussinesq diffusive cases. 
Questions that arise are : Does this behaviour indicate our approach is invalid ? Are 
any of these solutions actually applicable to real situations ? We will later attempt 
to allay such concerns by making a comparison to a ‘realistic ’ two-dimensional 
calculation. Also, some related fluid-flow models have exhibited singularities but 
have nonetheless been found useful. In  particular, Hoskins & Bretherton’s (1972) 
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model of frontogenesis in a rotating quasi-geostrophic fluid also has quadratic 
distributions of density (this time in the y-direction, the direction parallel to the 
front) and, by their description, their solutions ' collapse ' at finite time on the lower 
boundary. Nevertheless, they feel that their solutions are realistic and that their 
model's more important limitation is its inability to account for turbulent transport. 
This becomes of significant importance for front development well before their 
model's blow-up. 

Another related model problem is that of Childress et al. (1989). They have recently 
considered the blow-up of incompressible stagnation-point flows which have linear 
distributions of vorticity. The geometry they assumed was, as here, the infinite 
channel. The problems they considered actually make up a subset of the Boussinesq 
case that we will consider in $3. They found many examples of blow-up and 
concluded that singularities form 'as a result of the unboundedness of initial 
vorticity ' (p. 5) .  What happens in the systems considered herein is that quadratic 
distributions of density act as a source for linear distributions of vorticity that then 
lead to blow-up. 

2.2. R, zero : analytic solutions 
Childress et al. discuss a solution technique for their inviscid model problem which we 
now apply to (2.5). Their inviscid model equation differs from (2.5) only in having a 
coefficient of 1 multiplying (awo/az)2 instead of %. 

Following Childress et al., we work with Lagrangian coordinates 7 = t and 5. The 
evolution equation for awo/az becomes 

. .  
The equation for pz is 

(2.10) 

(2.11) 

The transformation from 6 to z is given by 
-s 

~ ( 6 )  = - 1 + J J(r, 7 )  dr ,  (2.12) 
-1 

where J =  az/ag is the Jacobian. The evolution equation for J, obtained from 
DlJDt = 0, is 

(2.13) 

The initial condition on J(6) is that it  is equal to one. From (2.12), J is subject to the 
constraint 

J d g  = 2. (2.14) 

Equation (2.10) is of Ricatti type. The substitution awo/az = -Q(a$/a7)/$ yields 

-+Zh(T) a,$ $ = 0. (2.15) 

a J  aw, J = 0. a? a Z  

1: 
the linear equation 

a72 

The initial conditions on $ can be set to 

(2.16) 



6 D. Jacqmin 

From (2.11) and (2.13) and the various initial conditions, p2 = p z ( [ , 7  = O)q5-t and 
J = 4-g. 

The advantage of the linear equation (2.15) is that  it is separable. The solution for 
4 can be expressed in terms of any of its two linearly independent solutions. For 
example, setting 

then 

(2.17) 

A self-contained system of equations for determining qbl and q52 is given by the 
Wronskian equation 

coupled with the integral constraint equation (2.14) : 

(2.19) 

(2.20) 

This approach avoids having to find h(7) .  
We now discuss the particular case of p2 initially independent of z. This is the 

simplest case and it is also the case most relevant to the experiments of Simpson & 
Linden. (The flow evolution for this initial condition will be discussed for the 
Boussinesq model as well.) From the definition of A,, the initial value of p2 is 
constrained to be $. Thus 

31 = -[,$ = (b1+;fj25, p2 = $($l+&52[)-t 
5,7=0 

Integrations of pz then yield 

In the above 
A3 = $1-$42 ,  4T = 41+!$2; 

(2.21 a) 

(2.21 b )  

(2.22) 

q5B and & are the values of 4 a t  the bottom and top boundaries. From J = $-$ and 
equation (2.12) 

(2.23) 2 
2 = - 1 +- 

z ( [ )  can be easily inverted to find g(z )  : 

+;4,[)9-49. 
4 2  

g =  - [ ( 4 t + 9 ( z + 1 ) y - $ 1 ] .  2 
342 

(2.24) 

What remains is to find $2, #B, and q5T in terms of r = t .  
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FIGURE 1. The non-diffusive porous-media case with p1 initially uniform. Scaled (a) wo, ( b )  ul, 
and (c) p2 are shown at time intervals of 0.188, from t = 0.188 to  0.94. 

To do that, (2.20) is first evaluated to find the relationship between and $2. This 

$2 = ($,+td,)"($,-t$,)'. (2.25) 
yields 

This can be easily manipulated to find g5T in terms of &: 

(2.26) 
1 1  

$T = r(3-24- 4 "B-9 )- 13 . 
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X 

FIGURE 2. The non-diffusive porous-media case with p z  initially uniform. The contour p-po = 
pz 2 = 10 is shown in the {x, z )  coordinates of the channel. Times shown are at intervals of 0.188 from 
t = 0.188 to 0.94. 

Then, from the Wronskian equation for & and #B, 

(2.27) 

Finally, (2.27) can be integrated to yield 

7 = 4 3 ~  -:- 6 4 3  sin-' (;&) + (3 -i#i)i (3& -@B) +?: 4 B' (2.28) 

Thus, #B is expressed implicitly in terms of 7 and, from (2.22) and (2.26), $z and 
#T are expressible in terms of #B. 

We first consider the time at  which the flow blows up. From the transformation 
between awo/az and #, blow-up will occur when either a # / a ~ + o o  or $ + O .  The 
integral constraint on J, equation (2.14), and its #-; form together act, however, to 
limit the approach to blow-up to  the latter. From (2.10) blow-up occurs first a t  the 
lower boundary and from (2.15)-(2.16) q5 has its minimum there. Either leads to the 
conclusion that the time of blow-up, t, can be found from just the evolution of #B. 

From (2.27), #B is monotonically decreasing in 7 .  Thus, from t = 0 to  t, 4, varies from 
one to zero. From (2.28), 

t, = d31~--% x 0.9414. (2.29) 

At t, itself the blow-up is confined to the lower boundary. At the upper boundary, 
for example, # is 3% and thus p z  there is only 8. However, h(t)  also blows up a t  t, and 
so the blow-up propagates instantly. The transformation between awo/az and # is 
invalid past t,. 

Figure 1 shows the evolution of wo, ul, 'and p2. The fields are shown at time 
intervals of 0.188 up to t = 0.94. At each time shown, the fields are normalized to 
have a maximum value of one. Thus, only their form is shown. The figure shows that 
evolution of the flow is at first gradual. One of the characteristics of frontogenesis is 
the formation of an intense lower-boundary current. This becomes noticeable for this 
flow starting a t  about t = 0.6. Before that, u1 in the lower half of the channel exhibits 
approximately uniform shear. I n  late times, the boundary current becomes extremely 
narrow and, concomitantly, the position of the maximum of wo drops rapidly. Figure 
2 tracks the evolution of the contour p - p o  = p2x2 = 10. This, unlike figure 1 (c), can 
be directly compared to experiments. The density profile is approximately linear 
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FIGURE 3. The diffusive porous-media case with pz initially uniform. Scaled (a) u1 and ( b )  pz and 
the contour (c) p-po = p 2 x 2  = 10 are shown at time intervals of 0.268, from t = 0.268 to 1.34. 

until about t = 0.7. The parabolic profile of density shown in Simpson & Linden’s 
experiments is achieved only very near to blow-up. 

2.3.  R ,  non-zero 
We briefly consider the case R, + 0. For the most part, this case must be attacked 
numerically. Calculations have been made for a wide range of R,. A fine grid 
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(500-1000 points) was used with second-order spatial discretizations. Temporal 
discretization was also second order. The Crank-Nicholson method was used for 
diffusive terms while convective terms were treated explicitly. Time-step sizes were 
adaptively selected during the course of calculations so as to  always satisfy numerical 
convective stability criteria. 

Most calculations have been made for the case of p2 initially uniform. A particular 
result, for R, = 1, is shown in figure 3. The figure shows ul, p2 and the contour 
p2 x2 = 10 a t  equal time intervals up to t = 1.34, which is just before the flow blows up. 
The large diffusivity of this flow results in a much thicker lower-boundary current 
than for the non-diffusive case. The density boundary condition is important on the 
upper boundary but seems to be ovewhelmed by the frontogenesis process on the 
lower. 

Numerical results for initially uniform p2 have so far yielded blow-up for all R,. 
The numerical t, have been tested by varying both grid sizes and time-step size 
selection criteria. Convergence to  a definite t, was found as grid spacing and time- 
step size were reduced. The boundary-layer singularity associated with R, + 0 seems 
to be very weak. Calculations for a sequence of small R, showed a smooth progression 
oft, and of the interior flow to the non-diffusive case. The weak effect of the no-flux 
boundary condition (i33wo/i3z3 = 0) is in great contrast to the effects of the no-slip 
condition (aw,/az = 0) in Childress et aZ.’s stagnation-point flow model. As will be 
seen in the section on the Boussinesq model, the no-slip condition can completely 
change the late-time behaviour of a flow. 

Efforts to prove blow-up have been unsuccessful. It is easy, however, to prove a 
much weaker but still significant result ; that p2,  the z-averaged value of p2, increases 
in time monotonically for any stably stratified initial condition. Integrating (2.4) in 
z yields 

(2 .30 )  

The monotonic decrease and convexity of i3wo/az in z can be shown to extend to the 
diffusive case. From that, and from the fact that  the z-integral of awo/az is zero, the 
right-hand side of (2.30) must be 20. The right-hand side is zero only when p2 is 
uniform. Then it  can be shown that a2p2/at2 is positive. 

3. The Boussinesq case 

The flow equations are 
We now consider Boussinesq flow. The domain of flow is a channel of height 2H. 

au aw 
ax aZ -+- = 0, 

au au au ap a2u aZu 

at ax aZ ax (ax. a z 2 ) .  
+u-+w- = --+v -+- - 

aw aw aw ap a2w aZw -+u-+w- = --+v -+- -gp, 
at ax aZ aZ (a,. a z 2 )  

aP -+u-+w-=D aP aP (;; -+- TP), 
at ax aZ 

( 3 . 1 ~ )  

(3.1 b )  

( 3 . 1 ~ )  

( 3 . l d )  
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with boundary conditions 

w ( z  = f H )  = u(z = f H )  = - = 0. : ILiH 

Because of symmetries in the model flow, solutions are also applicable to a semi- 
infinite enclosure with no-stress sidewall conditions : 

aw 
u ( x  = 0) = -& lx-o = g I = 0. 

2-0 
(3.3) 

Equation (3.1) is non-dimensionalized by scaling density by A,, lengths by H ,  
pressure by A,gH, velocities by (A,gH)i,  and time by (H/A ,g ) i .  As with the porous- 
media case, we set p = po+p2 x2, p = p o + p z x 2 ,  u = ulx and w = w,. The evolution 
equations for p,, p , ,  ul, and wo are 

( 3 . 4 ~ )  aw, - u,+- - 0, 
a Z  

8% 2 awl  - a2u 

at a Z  

a Z  

(3.4b) - + U ~ + W , -  - - 2 p  2 + R  v 2 a22 9 

- _  3% - -p2 ,  (3.4c) 

(3.4d) 

where R, = v/(A,gH3)i  and R, = D/(A,gH3)? The equations for p, and p ,  form a 
subsidiary set that is forced by wo and p,. Equations (3.4) can be reduced to 

( 3 . 5 ~ )  

(3.5b) 

As with the porous-media case, A, is defined by setting 
f+l 
J p2(z, t = 0) dz = I. 
-1 

- 
In terms of p&, the dimensional z-averaged second horizontal derivative of p,  the 
timescaling becomes ( g H z ) - i .  This is essentially the same as the - scaling proposed 
by Simpson & Linden. Rv and R, become, respectively, v/[gH6p$Jt = O ) ] s  and 

3.1. Inviscid non-diflusive $ow 
This section considers both theory and numerical results. Discussion is limited to 
flows that are initially motionless and that are initially stably stratified. 

Appendix B discusses some of the general characteristics of the flow behaviour and 
presents a proof of blow-up. The result is 

D/[gH“(t = O)$.  
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FIQURE 4. The inviscid-non-diffusive Boussinesq case with pz initially uniform. Scaled (a) wo, (a) 
ul, and (c) pz and (d )  the contour p-po = pzz2 = 10 are shown at time intervals of 0.322, from 
t = 0.322 to 1.61. 

For the initially motionless case this yields 

1 R  

tb (0.2886);2 
- 2.924. (3.7) 

The result is a bit weaker than for the porous-media case because the proof does not 
take much advantage of either the growth or distribution of pz. The proof can be 
changed in minor ways so that it can be applied to some cases of stagnation-point 
flow considered by Childress et al. Blow-up can be proved for their model when awo/az 
is initially convex and initially a2w0/az2 < 0. 

We briefly consider the particular case of flow starting from initially uniform p2. 
Results of numerical calculations are given in figure 4, which shows wo, u,, p2 and the 
contour p2x2 = 10 at time intervals of 0.322: tb for this flow is about 1.613. The 
overall flow behaviour is similar to the porous-media case. As with that case, u, a t  
first exhibits approximately uniform shear. A strong lower-boundary current exists 
after t = 1.  In late stages, this current becomes very narrow - though not as narrow 
as the porous-media case -and the location of the maximum of wo drops rapidly. 
Together with this, the density field develops a broad parabolic profile. 

3.2. Viscous diffusive flow 
We now consider viscous diffusive flow. Results are chiefly numerical. Both one- 
dimensional (channel) and two-dimensional (box) simulations are presented. 
Consideration is limited to p2 being initially uniform and to 0 < R, < R,. The two 
extreme cases R, = 0 and R, = R, will be seen to give qualitatively similar results. 
Time to frontogenesis seems to be set primarily by R,. 

Figure 5 shows ul, p2 and the contour p2x2 = 10 at time intervals of 0.4 for R, = 
0.01, R, = 0. The flow evolution shown is qualitatively similar to that of all viscous 
cases examined. It can be seen that, even though R, is zero and R, is small, the flow 
evolution becomes entirely different from the inviscid case. A major consequence of 
the viscous lower-boundary condition is that flows no longer remain stably stratified. 
Instead, it can be shown from (3 .4d)  that the position of maximum pz (starting from 
initially uniform pz)  must be in the interior and, further, once frontogenesis begins 
and wo is large, that it tends to be above the position of minimum ul. An interior 
minimum u,, of course, is created by the lower-boundary no-slip condition. Viscosity 
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FIGURE 5. The Boussinesq case with R ,  = 0.01, R,  = 0 with pz initially uniform. Scaled ( a )  u1 and 
( b )  pz and the contour (c) p-po = pzx2  = 10 are shown at time intervals of 0.4, from t = 0.4 to 2. 

X 

initially forces this minimum away from the boundary. Once away it is then forced 
by convection and by pressure effects to continue to rise. This inviscid interior 
forcing can be seen by checking the signs of the terms in (3.6). The viscous lower 
boundary condition thus leads, as the flow evolves, to  a complete change in the 
dynamics of the interior flow. 

Figure 6 details the late-time behaviour of the flow. At this point, calculations 
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FIGURE 6. As for figure 5 but for late times, from t = 2.02 to 2.10 a t  time intervals of 0.02. 

become rather difficult. Top and bottom boundary layers require increased grid 
resolution and both this increased grid resolution and the flow’s great speed require 
very small time steps. At late times, the positions of maximum w,,, pz, and minimum 
u1 all rise very rapidly. One puzzling occurrence is the build-up of an upper-boundary 
current. This current becomes stronger than the lower-boundary frontal current. The 
character of the flow changes completely and results no longer have any bearing on 
frontogenesis. 

Figure 7 shows a very diffusive case, R, = R, = 0.1. The results for p2 are 
qualitatively similar to those shown in figure 5 though its top and bottom boundary 
layers are, of course, thicker and diffusion slows the initiation of frontogenesis. u1 is 
viscously dominated until late times, keeping an approximately cubic profile (ul z 
A ( t )  (2-z3)). An upper-boundary current forms starting at about t = 3.  u1 and p2 grow 
very gradually up until about t = 2. Very rapid growth begins a t  about t = 2.8. 

The occurrence of blow-up for the viscous case remains uncertain. All calculations 
made so far give monotonic and faster-than-exponential growth and have the 
appearance of leading to blow-up. However, because of time-step restrictions due to 
stability requirements, computations cannot actually be carried out to a blow-up. A 
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PZJM~X ( I P ~  
FIQURE 7. The Boussinesq case with R, = 0.1, R,  = 0.1 with pz initially uniform. 

Scaled pz at times t = 0.65, 1.95, and 3.25. 

Pmax t 

1 1.4007 
10 2.8263 

100 3.1574 
lo00 3.2566 

lo4 3.2928 
10' 3.3085 
10' 3.3167 
lo7 3.3216 

TABLE 1.  Increase of pma,(t) with t for R, = 0.1, R,  = 0.1 

rough extrapolation of the two cases discussed above gives rise an apparent time of 
blow-up for the first (R, = 0.01, R ,  = 0) of about 2.12 and for the second (R, = R, 
= 0.1) of about 3.33. An idea of the approach to the apparent blow-up for the second 
case is given in table 1. This gives t for selected values of p,,(t) (p,,, increases 
monotonically with time). Extensive cross-checking has been done in an attempt to 
eliminate false blow-ups due to numerical problems. Both cases discussed above have 
been computed with various different time-step selection criteria, different spatial 
mesh sizes, and different finite-difference algorithms. Agreement holds amongst the 
various calculations to all times calculated. The data in table 1 were computed using 
1600 mesh points, and from comparison to calculations with 800 and 400 mesh 
points, the results are accurate to a t  least six figures. 

One rather nagging question was whether these channel results could be applied to 
finite geometries, in particular to the box geometry used by Simpson & Linden. It 
seemed likely that results would be applicable because the horizontal pressure 
gradient is determined locally (in x) through the hydrostatic pressure balance as long 
as p is locally horizontally quadratic. Thus, the evolution of the fluid a t  a point at 
the light end of the box should be independent of the circulation and mixing that 
occurs at the dense end until the recirculation penetrates close by. Recirculation at 
the light end is already included in the channel model. The only new feature there 
is the no-slip condition at x = 0. The effects of this, however, were expected to be 
confined to a narrow boundary layer. 



Frontogenesis driven by horizontal density distributions 17 

FIGURE 8. p-po for the box calculation. Contours are at intervals of 0.02. Non-dimensional times 
shown are (a) 0.48, ( b )  0.80, (c) 1.12, (d) 1.44, (e) 1.76, (f) 1.92, (9)  2.08. 
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FIGURE 9. u for the box calculation. Contours are at intervals of 2 cm/s. Dashed contours indicate 
leftward velocity. Non-dimensional times shown are (a) 0.16, (b )  0.32, (c) 0.80, (d )  1.12, (e) 1.60, (f) 
1.92. 

To check all this, two-dimensional calculations were done of flow in a box. The 
calculations were dimensional. The box was taken to be 72 cm long and 3 cm high, 
the Earth’s gravity was approximated as 1000 cm/s2, and the initial dimensional pz 
was set to 0.00005 g/cm2. The calculations were meant to simulate a possible 
miniature version of the Simpson & Linden experiments, which were carried out in 
a box 3.6 m long and 15 cm high, or 5 times the size assumed for the simulation. The 
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Z 

0 0.8 1.6 2.4 3.2 4.0 

FIGURE 10. w for the box calculation at z = 2. Non-dimensional times shown are intervals of 
0.16 from t = 0.16 to 1.92. 

w 

viscosity was set to  ~ 0 . 0 0 8 7 1  cmz/s. This choice yields an R, of 0.01. Two 
calculations were done with different diffusivities. I n  the first, the diffusivity was set 
equal to the viscosity (R, = 0.01), in the second, to one-tenth the viscosity (R, = 
0.001). The second choice is more realistic (for water with density gradients due to  
temperature differences) but the first choice can be computed more reliably. The 
overall results for the two cases turned out to be very similar. One-dimensional 
channel flow calculations yield a non-dimensional apparent blow-up time for the first 
case of about 2.28 and for the second case of about 2.24. (To facilitate comparisons 
all times given in the ensuing discussion will be non-dimensional, Dimensional times 
in seconds can be found from the non-dimensional by dividing by (0.15); z 0.3783.) 
The channel flows lose their frontogenetic character, the upper-boundary current 
becoming dominant, a t  about t = 2.05 for the first case and t = 2.03 for the second. 
The calculations were done on a 960 by 60 uniform mesh using second-order space 
and time differencing. 

Figures 8 and 9 show the evolution of p and u for the first case up to  the non- 
dimensional time of 2.08. As observed with the channel calculations, u in the interior 
first develops into an approximately z-independent shear. The density field tilts with 
only a slight intensification of gradients. Frontogenesis begins after about t = 1.  u 
loses its antisymmetry in z ,  its lower boundary current becoming dominant. At late 
times, in agreement with the channel calculations, this current begins to  lift away 
from the channel floor (see figure 9f). Near the lower boundary density gradients 
intensify by close to  an order of magnitude. At the upper, horizontal divergence 
nearly eliminates them. The channel-flow-like region in which these events occur 
shrinks with time, of course, but density remains nearly quadratic a t  the ‘nose’ of 
the boundary current up to about t = 1.95. The extent of the channel-flow-like region 
a t  any of the times shown can be deduced from the plots of u - in the channel-like 
region its contours are equispaced in the x-direction. For example, a t  t = 1.76 the 
region extends to  about x = 12. Figure 10 shows w from the box calculation a t  x = 
3 up to the non-dimensional time of 1.92. To the eye, plots of w from the channel and 
box calculations are in complete agreement up to the last time shown. At t = 1.92, 
the channel and box flow results disagree by less than 3%. 

As mentioned above, the calculation with R, = 0.001 gives generally very similar 
results. One interesting difference is the generation of a small patch of ‘turbulence’, 
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beginning at  about t = 1.6, that  follows behind the nose of the front. This, however, 
has no noticeable effect on flow profiles a t  the nose. These profiles agree with the 
channel flow calculations up to about t = 1.92. 

Other box calculations, not discussed here, have also been done. These all show 
very good agreement with their corresponding channel calculations. What was 
surprising is how precise this agreement can be and how long it can last. 

4. Discussion 
We have presented two simple flow models that yield frontogenesis and that 

illustrate its essential dynamics in a clear-cut way. Both the porous-media model and 
the inviscid-non-diffusive Boussinesq model allow a wealth of exact results. Further, 
the Boussinesq model has been shown to be applicable to contained two-dimensional 
Boussinesq flow and thus, we hope, to experiments. 

However, the limitations of the models should also be noted. Most serious is the 
viscous Boussinesq model’s inability to account for turbulence. The later stages of 
flow in this model - particularly the lifting of the current and density front far from 
the lower boundary - are unrealistic. In  an experiment, of course, turbulence would 
develop as a consequence of three-dimensional instabilities. The inclusion of some 
kind of modelled ‘turbulent mixing ’ would probably eliminate these simulations’ 
unrealistic late-stage behaviour. The qualitative nature of both the porous-media 
and Boussinesq equations further limits results. 

The blow-up of the porous-media and inviscid Boussinesq models extends and 
sheds some further light on the results of Childress et al. It seems to confirm their 
comment that conclusions drawn from these blow-ups must be made with care. 
Blow-up, though interesting, probably reveals little new physics. Instead, it seems to 
be just a consequence of the unboundedness of initial conditions. On the other hand, 
the box calculations have shown that blow-up does not invalidate a model. Box and 
channel results agree up to fairly late times. 

Our results have largely confirmed Simpson & Linden’s hypotheses. Except for 
large R,, the scaled time both to frontogenesis and to blow-up is O(1). These models 
clearly show the role of density curvature in causing lower-boundary horizontal 
convergence and from thence frontogenesis. 

Appendix A. Porous-media blow-up 
We begin by proving that dwo/az is monotonically decreasing and convex, i.e. that, 

for all t, (i)  azwo/az2 G 0 and (ii) a3w0/az3 2 0. Consideration is limited to R,  = 0 and 
to initial distributions of density that are both 20 and stably distributed (dp/dz G 
0) * 

We first consider the monotonicity of awo/az. For p 2 0, both po and pz must be 
2 0. p is subject only to advection so, since it is initially 2 0, it must remain 2 0 for 
all t .  Thus pz must remain >, 0. Since pz = -~zwo/az2, azwo/azz must therefore always 
be < 0. To prove a3wo/az3 2 0 we consider its evolution equation: 

Neither the convective nor the awo/az term can change the sign of a3wo/az3. Since the 
‘source’ term on the right-hand side of (2.5) is necessarily 2 0 and since a3wo/az3 2 0 
initially, necessarily a3wo/az3 2 0 for all t .  
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FIQURE 11.  aw,/az (solid line) and approximation (dashed line). The integral of this 
approximation is 2 0. 

Some additional characteristics of aw,/az can be deduced from the fact that its 
integral is zero. From the monotonicity of aw,/az, awo/azI-, is always positive and 
aw,/az 

We now have enough information to prove blow-up. Integrating (2.4), the 
evolution equation for aw0/az is 

is negative. From its convexity, the location of aw,/az = 0 is in z < 0. 

h(t) can be found in terms of aw,/az by integrating (A 2). This yields 

The evolution equation for i3wo/az a t  the lower boundary is 

Blow-up is proved by bounding h(t) above -a(i3wo/&-l)2, where a is less than $. 
The proof is in two parts. In the first part we bound the location of z,, which is the 

value of z where awo/az equals zero. The convexity of awo/az has already led to 
zo < 0. It also leads to the ratio 

We now introduce a function that is everywhere 2 aw,/az. The function, shown in 
figure 11, is made up of two lines that intersect aw,/az at  z = & 1 and at  z,. Since the 
integral of awo/az = 0, the integral of this function must be 2 0. This leads to the 
desired lower bound for zo. We find 
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FIGURE 12. aw,,/az (solid line) and approximation (dashed line). The integral of the square of this 
approximation provides an upper bound on S Ti (aw,/az)2 dz. 

We now need an upper bound on the integral of (awo/az)2. The function 

shown in figure 12, yields 

Since the right-hand side of (A6) is linear in zo the admissable maximum will be 
found a t  either zo = 0 or zo = - (1 -/3)/(1 +p).  Calculations yield the maximum at  the 
latter, a t  a /3 of about 0.86. We find 

An upper bound on the time to blow-up is now straightforward. Applying (A 7) to 
(A 4) gives 

from which 

Thus 

where t, is the time to blow-up. Note that, from the convexity of awo/az and from the 
definition of A,, i3w0/azI-,,,=, 2 I .  A global upper bound on t ,  is thus 1.6375. 
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Appendix B. Boussinesq blow-up 
As with the porous-media case, we must first consider some aspects of the flow’s 

general behaviour. Consideration is limited to R, = R ,  = 0 and to flows that have 
p 2 0 and that are initially motionless and stably stratified. 

First, both p ,  and awo/az are monotonically decreasing and convex. The 
monotonicity of p 2  is due to  the positivity of p2. The monotonicity of awo/az can be 
proved from the evolution equation for a2wo/az2. From (3.5a), this is 

a2wo/az2 is initially zero but becomes negative because of the right-hand forcing. 
Neither the advection or awo/az term can then change the sign of a2wo/az2. By similar 
reasoning it can next be shown that a2p2/8z2 2 0 always and then that a3wo/az3 2 0. 

Next, a&/at 2 0  always. From the concavity of wo and from its boundary 
conditions, wo 2 0 always. The equation for the evolution of f i ,  the z-averaged value 
of p z ,  is 

which, since a2p2/az2 2 0, must be 2 0. 
We now prove blow-up. With R, = 0, (3 .5~)  at the lower boundary is 

p ,  can be written as 

From the proof of 

g ( t )  + F 2 ,  where 

blow-up for porous media, I ( t )  > -0.7114(~wo/~z 1 - J 2 .  Also, 
ztj52 dz = j52(  - 1) 2 E. This can be shown from the facts that  (i) f12 is convex, (ii) 

0, and (iii) fi2( - 1 )  -F2(  + 1) = 2fi. Since fi  is monotonically increasing, we have 

for t 2 to.  For to = 0 this becomes, from the constraint on the initial value of fi ,  
2 dw.1 > 0.2886 @ I-,) + 1. 

at a Z  

Since awo/az is initially equal to  zero, this yields 

1 x  
tb < (0.2886):2 

- x 2.924. 

R E F E R E N C E S  
CHILDRESS, S., IERLEY, G. R., SPIEOEL, E. A. & YOUNG, W. R. 1989 Blow-up of unsteady two- 

dimensional Euler and Navier-Stokes solutions having stagnation-point form. J .  Fluid Mech. 
203, 1-22. 



24 D. Jacqmin 

HOSKINS, B. J. t BRETHERTON, F. P. 1972 Atmospheric frontogenesis models : mathematical 
formulation and solution. J .  Atmos. Sci. 29, 11-37. 

SIMPSON, J. E. & LINDEN, P. F. 1989 Frontogenesis in a fluid with horizontal density gradients. 
J .  Fluid Mech. 202, 1-16. 

STUART, J.  T. 1987 Nonlinear Euler partial differential equations : singularities in their solution. 
In Symposium to Honor C. C. Lin. World Scientific. 


